US009208134B2

a2z United States Patent (10) Patent No.: US 9,208,134 B2
Alkharashi 45) Date of Patent: Dec. 8, 2015
(54) METHODS AND SYSTEMS FOR 7,269,547 B2 9/2007 Pentheroudakis et al.
TOKENIZING MULTILINGUAL TEXTUAL ;’5;3’222 g% 2%8(1)3 gundleytetlal
937, arrier et al.
DOCUMENTS 8,180,713 B1* 5/2012 Rigbyetal. 706/12
. L. 2002/0165707 Al* 112002 Call 704/2
(75) Inventor: Ibrahim Alkharashi, Riyadh (SA) 2005/0010564 A1* 1/2005 Metzger et al .. 70773
2005/0060651 Al* 3/2005 Anderson ... 715/530
(73) Assignee: KING ABDULAZIZ CITY FOR 2005/0091031 Al* 4/2005 Powelletal. 704/4
SCIENCE AND TECHNOLOGY 2005/0240911 Al* 10/2005 Hundley et al. . . 717/142
Rivadh (SA ’ 2006/0080290 Al* 4/2006 Lombardiccccoeveneeenn. 707/3
iyadh (SA) 2006/0116862 Al* 6/2006 Carrieretal. 704/1
)) o) 2008/0103757 Al* 5/2008 Washizawa et al. .. 70472
(*) Notice: Subject to any disclaimer, the term of this 2008/0140387 Al* 6/2008 Linker 704/9
patent is extended or adjusted under 35 2008/0189097 Al* 82008 Burukhin 70472
U.S.C. 154(b) by 1004 days. 2009/0070101 Al* 3/2009 Masuyamaetal. 704/9
2009/0083266 Al 3/2009 Poola et al.
2009/0187567 Al* 7/2009 Rollecccevvvvvineninnnnn 707/6
(21) Appl. No.: 13/346,981 2009/0204596 Al* 82009 Brunetal. 707/5
. 2009/0248392 Al* 10/2009 Talwaretal. 704/3
(22) Filed: Jan. 10, 2012 2010/0191825 Al* 7/2010 Yamagishietal. 709/217
2011/0078152 Al* 3/2011 Formanetal. 707/747
(65) Prior Publication Data 2011/0078421 Al* 3/2011 Greineretal. 712/227
US 2013/0179147 Al Jul. 11, 2013 * cited by examiner
(51) Imt.ClL Primary Examiner — Eric Yen
GOG6F 17/22 (2006.01) (74) Attorney, Agent, or Firm — Andrew M. Calderon;
GO6F 1727 (2006.01) Roberts Mlotkowski Safran & Cole, P.C.
(52) US.CL
CPC ... GOG6F 17/2217 (2013.01); GO6F 17275 (57) ABSTRACT
(2013.01); GOG6F 177277 (2013.01) Methods and systems for tokenizing multilingual textual
(58) Field of Classification Search documents are provided. A method implemented in a com-
CPC ... GO6F 17/27; GO6F 17/2705; GO6F 17/271; puter infrastructure, includes determining an attribute of a
GO6F 17/272; GOG6F 17/2755 current character in input text, the attribute of the current
See application file for complete search history. character indicating one or more classes of characters the
current character is assigned thereto. The method further
(56) References Cited includes determining one or more attributes of one or more

U.S. PATENT DOCUMENTS

next characters in the input text, the one or more attributes of
the one or more next characters indicating the one or more
classes the one or more next characters are assigned thereto.

4,758,955 A * 7/1988 Chencccooeevvvvvviennns 715/257 ; ! %
4,991,094 A * 2/1991 Faganetal. ... 704/9 The method further includes constructing a token of the input
5,721,939 A * 2/1998 Kaplan 704/9 text that includes the current character and the one or more
g’ggg’ é 2; ﬁ : g; }ggg I(\:Iams ~~~~~ TR 703‘92“2/ (9) next characters, the attribute of the current character and the
,899, avarro etal.
5045058 A * 81999 Manners etal. .. 264/401 one or more e.lttrlbutes of the one or more next characters
6374242 B1* 4/2002 Childs et al. intersecting with each other.
6,845,373 B2 1/2005 Linhart
7,092,871 B2* 8/2006 Pentheroudakis etal. 704/9 20 Claims, 5 Drawing Sheets
300y 340 335 330\ 325\ 320 315 310 305\
5o 0 >

z z zZ z Zc aQ o

5] S s}] o 05 Z = =3

- g g g ow g < > I3

o a Q Q S0 & 3 >

e, 2. e o, i 5 = =

£ £ 5 5 °g 8 o <

® d 5] D » g % o o

et S &S a © @ S o

3" 2 &

U.S. Patent Dec. 8, 2015 Sheet 1 of 5 US 9,208,134 B2

10 ™
User Device 115 ;2%1;?%
___ .
Server 12
Computing Device 14
O/S‘\
26
Processor 20 L Memory 22A

Program Control
44

105 ;
/O Interface 24 ‘

| | rav || roM | L mo f

[/O Device
28

Storage System 22B

U.S. Patent Dec. 8, 2015 Sheet 2 of 5 US 9,208,134 B2

200~ 210~
205 ABCDEFGHIUKLMN & g__g -8 o
OPQRSTUYWXYZ NI R
Abcdefghijkimn —_y s E A
OpQrstuvwxyz y i <
et : s . s
3 ""A
. = T J¢
English Alphabet 5w
DR e
.- u‘"_L O3
215
S W 5 . ¥z
L, " Control and
[] ()) white space “ &
@#$a - = Arabic Alphabet
*
&7 4+ x % 20N LYY S
Punctuations, white spaces s TVYAS
and controls
MNumerals
FIG. 2
300\ 340\ 335\ 330\ 325\ 320 315 310 305
5 o >
5 | 8 | 8| B |g25| 2 | € | 8
o o aQ a 28 g 3 & g
& | ¢ | & | 2 (585| 8 | z | Z
3 3 2 3 |38 | & = 5
a a o o o 7 @ 2 &
a2’ o] 2

FIG. 3

U.S. Patent Dec. 8, 2015 Sheet 3 of 5 US 9,208,134 B2

400

405

FIG. 4

505 (st & 580y il
Sl Sl & S Space Shuttle Challenger sl
Al 730 Lkl 2e sl 8 1986 iy 28 i adll -

L o 1S (pl) Amaid) clizadll Al) & eae B i

FIG. 5

U.S. Patent Dec. 8, 2015 Sheet 4 of 5 US 9,208,134 B2

605

|token # |token # |token # |token # |token
1ol 15 |<lsSa 29 | 1986 43 57 | A
2 |A(16 |A 30 |A 44 b 58 |tss
3 |4ssa 17 |t 31 | 45 |A 59 | A
4 18 [A 32 |A 46 |4 60 |
5 el 19[S 33 [47 A 61 [A
6 DA 20 |A-A 34 |A 48 |g e 62 |teiie
7 |l 21 [35 |am 49 |A

8 |A 22 1A 36 |A 50 |4,

9 |Space 23 |4 37 Lt 51 |A99999

10 |A 24 |A 38 |A 32 |sleaill

11 |Shuttle 25 |28 39 |« 53 |A

12 |A 26 | A 40 (73 534 |dapd

13 [Challenger |27 | 41 |A 55 |A

14 [<A 28 |A 42 | 36 |oa

FIG. 6

U.S. Patent Dec. 8, 2015 Sheet 5 of 5 US 9,208,134 B2

700 N
705
“~ Stan

710

N Receive Text
715

S Convert Text
720

N Determine ACC
725

More

Characters?
YeS 735 v
730
N Determine ANC Construct Token
750 775 l
Construct Token Add Token to Token List
755 I 780\ v
. Add Next Character to .
Add Token to Token List Token Buffer Return Token List
760 l l
785\
Empty Token Buffer End
765 i
Add Next Character to
Token Buffer
770 l FIG. 7
Set ACC to ANC

US 9,208,134 B2

1
METHODS AND SYSTEMS FOR
TOKENIZING MULTILINGUAL TEXTUAL
DOCUMENTS

FIELD OF THE INVENTION

The invention relates to textual processing and, more par-
ticularly, to methods and systems for tokenizing multilingual
textual documents.

BACKGROUND OF THE INVENTION

Textual processing is an important part of human language-
based systems. Tokenization is the process of splitting a
stream of input text into words, phrases, symbols, or other
meaningful elements known as tokens. A list of tokens
becomes input for further processing, such as, for example,
morphological analyzing, parsing, text mining, indexing, and
searching. The process of tokenization is useful both in lin-
guistics for text segmentation and in computer science for
lexical analysis before interpretation or compilation.

Programming languages may provide split functions for
tokenizing a given string into basic linguistic components.
Such split functions may utilize a regular expression (e.g.,
“regex” or “regexp”’) which is written in a formal program-
ming language and can be interpreted by a regular expression
processor. Some of the programming languages, such as Perl,
have fully-integrated regular expressions into the syntax of
the languages themselves. Other programming languages,
like C, C++, Java, and Python, provide instead access to
regular expressions only through libraries.

In the split functions, for example, tokenization may be
achieved after identifying a set of separators known as delim-
iters. In identifying basic language words, delimiters may
include whiter spaces and/or punctuation marks. However,
using delimiters for tokenization may be overly complicated
and inefficient with respect to storage and processing time
since input text has to be parsed for each of the delimiters. In
addition, current processes for tokenization may not be
adapted for use with intermixed input text written in two or
more languages.

Accordingly, there exists a need in the art to overcome the
deficiencies and limitations described hereinabove.

SUMMARY OF THE INVENTION

In a first aspect of the invention, a method implemented in
a computer infrastructure includes determining an attribute of
a current character in input text, the attribute of the current
character indicating one or more classes of characters the
current character is assigned thereto. The method further
includes determining one or more attributes of one or more
next characters in the input text, the one or more attributes of
the one or more next characters indicating the one or more
classes the one or more next characters are assigned thereto.
The method further includes constructing a token of the input
text that includes the current character and the one or more
next characters, the attribute of the current character and the
one or more attributes of the one or more next characters
intersecting with each other.

In another aspect of the invention, a computer program
product includes a tangible computer usable storage medium
having readable program code embodied in the tangible com-
puter storage medium. The computer program product
includes at least one component operable to determine an
attribute of a current character in input text, the attribute of the
current character indicating one or more classes of characters

10

15

20

25

30

35

40

45

50

55

60

65

2

the current character is assigned thereto. The at least one
component is further operable to determine one or more
attributes of one or more next characters in the input text, the
one or more attributes of the one or more next characters
indicating the one or more classes the one or more next
characters are assigned thereto. The at least one component is
further operable to construct a token of the input text that
includes the current character and the one or more next char-
acters, the attribute of the current character and the one or
more attributes of the one or more next characters intersecting
with each other, and each of the attribute of the current char-
acter and the one or more attributes of the one or more next
characters including an attribute data structure including a
predetermined primitive data type of binary bits.

In yet another aspect of the invention, a computer system
for tokenizing multilingual textual documents, includes a
CPU, a computer readable memory and a tangible computer
readable storage media. The computer system further
includes first program instructions to determine an attribute
of'a current character in input text, the attribute of the current
character indicating one or more classes of characters the
current character is assigned thereto. Second program
instructions determine one or more attributes of one or more
next characters in the input text, the one or more attributes of
the one or more next characters indicating the one or more
classes the one or more next characters are assigned thereto.
Third program instructions to perform a Boolean operation
on the attribute of the current character and the one or more
attributes of the one or more next characters to determine
whether the attribute of the current character and the one or
more attributes of the one or more next characters intersect
with each other. Fourth program instructions construct a
token of the input text that includes the current character and
the one or more next characters, the attribute of the current
character and the one or more attributes of the one or more
next characters intersecting with each other, and each of the
attribute of the current character and the one or more
attributes of the one or more next characters including an
attribute data structure including a predetermined primitive
data type of binary bits. The first, second, third, and fourth
program instructions are stored on the tangible computer
readable storage media for execution by the CPU via the
computer readable memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described in the detailed descrip-
tion which follows, in reference to the noted plurality of
drawings by way of non-limiting examples of exemplary
embodiments of the present invention.

FIG. 1 shows an illustrative environment for implementing
steps in accordance with aspects of the invention;

FIG. 2 shows an exemplary plurality of classes including a
plurality of characters and/or symbols in accordance with
aspects of the invention;

FIG. 3 shows an exemplary attribute data structure of a
given character or symbol in accordance with aspects of the
invention;

FIG. 4 shows an exemplary screenshot of a web browser in
accordance with aspects of the invention;

FIG. 5 shows exemplary input text from the web browser in
FIG. 4 that may be tokenized in accordance with aspects of
the invention;

FIG. 6 shows an exemplary token list generated based an
input text in FIG. 5, in accordance with aspects of the inven-
tion; and

US 9,208,134 B2

3

FIG. 7 shows an exemplary flow diagram implementing
processes in accordance with aspects of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to textual processing and, more par-
ticularly, to methods and systems for tokenizing multilingual
textual documents. More specifically, in embodiments, the
present invention is directed to a tokenization tool which can
receive input text and tokenize the input text into one or more
tokens, e.g., words, phrases, symbols, or other meaningful
elements. To accomplish this, the tokenization tool may
group characters and/or symbols of one or more particular
languages into one or more classes. More specifically, in
embodiments, the tokenization tool may assign a given char-
acter or symbol of'a language to one or more classes by setting
an attribute data structure corresponding to the character or
symbol.

In embodiments, the present invention includes an attribute
table which can initially include one or more predetermined
attribute data structures of respective one or more characters
or symbols. The tokenization tool may set (e.g., update),
store, and/or load the attribute data structures in the attribute
table. Once the input text is received, the tokenization tool
may add each incoming character and/or symbol of the input
text to a current token of the input text when a respective
attribute of the incoming character and/or symbol intersects
or matches an attribute of a previous character and/or symbol,
e.g., when the incoming character is part of a same class of
characters as the previous character. That is, the tokenization
tool may determine whether each incoming character and/or
symbol is part of a current token or represents a start of a new
token based on the attribute table, and if so, may construct the
current or new token with the incoming character and/or
symbol. The tokenization tool can add a constructed token to
atoken list which includes one or more tokens constructed by
the tokenization tool. When the input text does not include
any more incoming characters, the tokenization tool may
return the token list to a requesting user via, e.g., a user device
and/or a third party server, for subsequent textual processing.

Advantageously, by using character attributes, the present
invention enables efficient tokenization of input text, even
when there is no valid separator or delimiter in the input text.
The present invention also simplifies tokenization since the
present invention may utilize a smallest primitive data type
(e.g., one byte) to describe and group characters and/or sym-
bols, and a single Boolean operation. Moreover, the present
invention may allow fast tokenization of multilingual textual
documents. The tokenized input text may be used in a wide
range of natural language applications, such as, for example,
language parsing, text analysis, data mining, text searching,
and/or machine translation.

The present invention simplifies the process of tokenizing
text whether the text is written in one language or it has an
intermixed character set belonging to two or more languages.
The present invention achieves the task by comparing an
attribute of a coming character against an attribute of a pre-
vious character. The process should be very efficient since it
only deals with one value that describes a group of characters,
and it depends only on a Boolean “AND” operation.

System Environment

The present invention may be embodied as a system,
method or computer program product. The present invention
may take the form of a hardware embodiment, a software
embodiment or a combination of software and hardware.

40

45

60

4

Furthermore, the present invention may take the form of a
computer program product embodied in any tangible storage
of expression having computer-usable program code embod-
ied in the medium. The computer-usable or computer-read-
able medium may be any medium that can contain, store, or
communicate, for use by or in connection with the instruction
execution system, apparatus, or device. The computer-usable
or computer-readable medium may be, for example, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device.

FIG. 1 shows an illustrative environment 10 for managing
the processes in accordance with aspects of the invention. The
environment 10 includes a server or other computing system
12 that can perform the processes described herein. The
server 12 includes a computing device 14 which can be resi-
dent on a network infrastructure or computing device. The
computing device 14 includes a processor 20, memory 22A,
an [/O interface 24, and a bus 26. In addition, the computing
device includes random access memory (RAM), a read-only
memory (ROM), and an operating system (O/S).

The computing device 14 is in communication with the
external 1/O device/resource 28 and the storage system 22B.
The I/O device 28 can comprise any device that enables an
individual to interact with the computing device 14 (e.g., user
interface) or any device that enables the computing device 14
to communicate with one or more other computing devices
using any type of communications link.

The processor 20 executes computer program code (e.g.,
program control 44), which can be stored in the memory 22A
and/or storage system 22B. While executing the computer
program code, the processor 20 can read and/or write data
to/from memory 22A, storage system 22B, and/or 1/O inter-
face 24. The program code executes the processes of the
invention such as, for example, tokenizing multilingual tex-
tual documents, as will be discussed below.

The computing device 14 includes a tokenization tool 105
which can receive input text and tokenize the input text into
one or more tokens, e.g., words, phrases, symbols, or other
meaningful elements. To accomplish this, the tokenization
tool 105 may group characters and/or symbols of one or more
particular languages into one or more classes. More specifi-
cally, in embodiments, the tokenization tool 105 may assign a
given character or symbol of a language to one or more
classes. The character or symbol may be assigned to the
classes by setting an attribute data structure corresponding to
the character or symbol.

For example, FIG. 2 shows an exemplary plurality of
classes 200 including a plurality of characters and/or symbols
in accordance with aspects of the invention. In embodiments,
the classes 200 can include an English alphabet class 205, an
Arabic alphabet class 210, a punctuations, white spaces and
controls class 215, and a numerals class 220. The English
alphabet class 205 may be assigned with characters of the
English alphabet, and the Arabic alphabet class 210 may be
assigned with characters of the Arabic alphabet. The punc-
tuations, white spaces and controls class 215 may be assigned
with one or more symbols (e.g., punctuations) of any lan-
guage, and/or with characters and/or symbols of any language
in a control and white space located in the class 215. The
numerals class 220 may be assigned with numerals of the
Arabic alphabet, as shown, and/or numerals of any other
language. It should be recognized by one of skill in the art that
the classes shown herein are provided as non-limiting, illus-
trative classes. For example, other language classes are also
contemplated by the present invention.

FIG. 3 shows an exemplary attribute data structure 300 of
a given character or symbol in accordance with aspects of the

US 9,208,134 B2

5

invention. To assign the character or symbol to one or more
classes of characters and/or symbols, the attribute data struc-
ture 300 may be set to indicate that the character or symbol is
assigned to the one or more classes. More specifically, in
embodiments, the attribute data structure 300 may include a
one-byte array (e.g., a smallest primitive data type) of binary
bits 305, 310, 315, 320, 325, 330, 335, and 340, although
other dimensions are contemplated by the invention. The
smallest primitive data type may be predetermined based on
a programming language of the tokenization tool 105, and
should support bit-based Boolean operations, e.g., an “AND”
operation. Each of the binary bits 305-340 may represent an
attribute of the corresponding character or symbol that indi-
cates whether the character or symbol is assigned to a respec-
tive class of characters and/or symbols.

For example, in embodiments, the binary bit 305 can rep-
resent an Arabic alphabet attribute which indicates whether
the corresponding character or symbol is assigned to an Ara-
bic alphabet class, e.g., the Arabic alphabet class 210 in FIG.
2. The binary bit 310 may represent an English alphabet
attribute which indicates whether the corresponding charac-
ter or symbol is assigned to an English alphabet class, e.g., the
English alphabet class 205 in FIG. 2. The binary bit 315 may
represent a numerals attribute which indicates whether the
corresponding character or symbol is assigned to a numerals
class, e.g., the numerals class 220 in FIG. 2. The binary bit
320 may represent a punctuations, white spaces and controls
attribute which indicates whether the corresponding charac-
ter or symbol is assigned to a punctuations, white spaces and
controls class, e.g., the punctuations, white spaces and con-
trols class 215 in FIG. 2. The binary bits 325-340, as shown,
may be undefined, but in alternative or additional embodi-
ments, each of the binary bits 325-340 may represent an
attribute which indicates whether the corresponding charac-
ter or symbol is assigned to a respective class of symbols
and/or characters. Since the attribute data structure 300 may
include the smallest primitive data type, advantageously, the
present invention maximizes storage and processing time
efficiency in the tokenization process. It should be recognized
by those of skill in the art that the attribute data structure 300,
and more specifically the one-byte array of the binary bits
305-340, are provided as non-limiting, illustrative examples,
where other example are also contemplated by the present
invention.

Referring back to FIG. 1, in embodiments, the computing
device 14 can include an attribute table 110 which can ini-
tially include one or more predetermined attribute data struc-
tures of respective one or more characters or symbols. The
attribute table 110 may include 256 attribute data structures or
bytes, although other dimensions are contemplated by the
invention. In preferred embodiments, the attribute table 110
may comprises 256 bytes, at most. The attribute table 110
may be indexed by the characters or symbols, and/or respec-
tive codes (e.g., in alphanumeric values from a predetermined
codepage) of the characters and/or symbols. The attribute
table 110 may be stored in the memory 22 A and/or the storage
system 22B. The tokenization tool 105 may set (e.g., update),
store, and/or load the attribute data structures in the attribute
table 110. For example, the tokenization tool 105 may access
an attribute data structure of a n-th character by reaching a
n-th entry in the attribute table 110, where n is an American
Standard Code for Information Interchange (ASCII) value
and/or code of the n-th character.

In embodiments, the tokenization tool 105 can receive
input text to be tokenized, e.g., from a user via the I/O device
28. In alternative or additional embodiments, the environ-
ment 10 may further access information from a user device

5

10

15

20

25

30

35

40

45

50

55

60

65

6

115 and/or a third party server 120. The user device 115 may
include any type of user device, such as, for example, a
smartphone, a laptop computer, a desktop computer, etc. The
third party server 120 may provide any type of third party
service(s) involving textual documents, such as, for example,
a web site, a web store, and/or a database service that may
need to parse, analyze, and/or search textual documents. The
tokenization tool 105 may receive input text to be tokenized
from and/or through the user device 115 and/or the third party
server 120. That is, the tokenization tool 105 can provide the
tokenization of the input text as a service to the user device
115 and/or the third party server 120.

For example, FI1G. 4 shows an exemplary screenshot 400 of
a web browser 405 in accordance with aspects of the inven-
tion. In embodiments, the web browser 405 can be displayed
to a user via a user device, e.g., the user device 115 in FIG. 1.
The web browser 405 may include a web page 410 provided
by a third party service, e.g., of a third party server 120 in F1G.
1. A portion 415 of the web page 410 may include bilingual
input text which may be tokenized. The web browser 405 (via
the user device) may send the portion 415 as input text to be
tokenized, to a tokenization tool of the present invention, e.g.,
the tokenization tool 105 in FIG. 1.

FIG. 5 shows exemplary input text 505 from the web
browser 405 in FIG. 4 that may be tokenized in accordance
with aspects of the invention. More specifically, in embodi-
ments, the web browser may send the portion 415 of the web
page 410, in FIG. 4, as the input text 505 to be tokenized, to
the tokenization tool 105 in FIG. 1. The input text 505 may
include bilingual input text, e.g., characters and/or symbols
from both the Arabic and English alphabets, as shown.

Referring back to FIG. 1, in embodiments, once the input
text is received, the tokenization tool 105 can covert the input
text into an array of codes of characters and/or symbols based
on whether the programming language (e.g., Java) of the
tokenization tool 105 requires conversion. Each of the codes
may include an alphanumerical value (e.g., “A2”), from a
predetermined codepage, that represents a respective charac-
ter or symbol (e.g., “¢”). The tokenization tool 105 may add
each incoming character and/or symbol of the input text to a
current token of the input text when a respective attribute of
the incoming character and/or symbol intersects or matches
an attribute of a previous character and/or symbol, e.g., when
the incoming character is part of a same class of characters as
the previous character. That is, the tokenization tool 105 may
determine whether each incoming character and/or symbol is
part of a current token or represents a start of a new token
based on the attribute table 110.

More specifically, in embodiments, the tokenization tool
105 can determine an attribute of a current character (ACC) or
a first character that includes an attribute data structure of the
current character, in the attribute table 110. The ACC is a
reference for incoming characters and whether these incom-
ing characters include intersecting attributes as the ACC. The
tokenization tool 105 may determine whether the input text
includes more incoming characters by, e.g., moving one step
into the array of codes. If so, the tokenization tool 105 may
determine an attribute of a next character (ANC) which
includes an attribute data structure of the incoming next char-
acter, in the attribute table 110. The tokenization tool 105 may
perform a Boolean “AND” operation (e.g., “&”) on the ACC
and the ANC to determine whether the ACC and the ANC
intersect (e.g., a resulting value is greater than zero) or do not
intersect (e.g., the resulting value is equal to zero). That is,
based on the “AND” operation on their attributes, the tokeni-
zation tool 105 may determine whether the current character
and the next character are part of a same class of characters.

US 9,208,134 B2

7

In embodiments, when the ACC and the ANC intersect, the
tokenization tool 105 can add the next character to a token
buffer. The token buftfer may be implemented in, for example,
the memory 22A and/or the storage system 22B. The tokeni-
zation tool 105 may use one or more characters in the token
buffer to construct a token of the input text, and the next
character is added to the token buffer since, based on the ACC
and the ANC intersecting, the next character is part of the
token to be constructed. Upon adding the next character to the
token buffer, the tokenization tool 105 may determine
whether the input text includes more incoming characters for
constructing tokens.

In accordance with further aspects of the invention, when
the ACC and the ANC do not intersect, the tokenization tool
105 can construct a token of the input text based on the token
buffer, e.g., to include the characters added to the token buffer.
The next character is not added to the current characters in the
token buffer since based on the ACC and the ANC not inter-
secting, the next character represents a start of a new token to
be constructed. The tokenization tool 105 may add the con-
structed token to a token list which includes one or more
tokens constructed by the tokenization tool 105. The tokeni-
zation tool 105 may empty the token buffer, and may add the
next character to the token buffer that represents the start of
the new token to be constructed. The tokenization tool 105
may set the ACC to the ANC, e.g., assign the ANC as the
reference for incoming characters. Upon adding the next
character to the token buffer, the tokenization tool 105 may
determine whether the input text includes more incoming
characters for constructing tokens. When the input text does
not include any more incoming characters, the tokenization
tool 105 may construct a last token of the input text based on
the token buffer, add the last token to the token list, and return
the token list to a requesting user via, e.g., the /O device 28,
the user device 115, and/or the third party server 120.

Advantageously, by using character attributes, the present
invention enables fast tokenization of input text, even when
there is no valid separator or delimiter in the input text. The
present invention also simplifies and makes more efficient the
process of tokenization since the present invention may uti-
lize a smallest primitive data type to describe and group
characters and/or symbols, and a single Boolean “AND”
operation. Further, the present invention may allow fast and
efficient tokenization of input text including an intermixed
character set which belongs to two or more languages, e.g.,
multilingual textual documents. The tokenized input text may
be used in a wide range of natural language applications, such
as, for example, language parsing, text analysis, data mining,
text searching, and/or machine translation. The present inven-
tion may also be part of systems, such as, for example, com-
pilers, machine translation systems, search engines, and/or
data mining applications.

FIG. 6 shows an exemplary token list 605 generated based
the input text 505 in FIG. 5 in accordance with aspects of the
invention. The token list 605 includes 62 tokens generated by
the tokenization tool of the present invention, e.g., the tokeni-
zation tool 105 in FIG. 1. The token list 605 is indexed by a
token number (“#”). Each of the generated tokens includes
characters and/or symbols of a single class of characters
and/or symbols. For example, a first token (e.g., token number
1) includes characters of an Arabic alphabet class (e.g., the
Arabic alphabet class 210 in FIG. 2). A symbol “A” denotes a
white space of the input text that is part of a punctuations,
white spaces and controls class, e.g., the punctuations, white
spaces and controls class 215 in FIG. 2.

FIG. 7 shows an exemplary flow diagram implementing a
process 700 in accordance with aspects of the invention. The

10

15

20

25

30

35

40

45

50

55

60

65

8

flow diagram may equally represent a high-level block dia-
gram or a swim-lane diagram of the invention. The steps of
the flow diagram may be implemented and executed from
either a server, in a client server relationship, or they may run
on a user workstation with operative information conveyed to
the user workstation. Furthermore, the invention can take the
form of a computer program product accessible from a com-
puter-usable or computer-readable medium providing pro-
gram code for use by or in connection with a computer or any
instruction execution system. The software and/or computer
program product can be implemented in the environment of
FIG. 1.

As shownin FIG. 7, at step 705, the process of the invention
begins. At step 710, input text is received that is eventually
tokenized into one or more tokens, e.g., words, phrases, sym-
bols, or other meaningful elements. At step 715, the input text
is converted into an array of codes of characters and/or sym-
bols. Each of the codes may include an alphanumerical value
(e.g., “A2”), from a predetermined codepage, that represents
a respective character or symbol (e.g., “¢”). At step 720, an
attribute of a current character (ACC) or a first character is
determined that includes an attribute data structure of the
current character, in an attribute table, e.g., the attribute table
110 in FIG. 1. The ACC is a reference for incoming characters
and whether these incoming characters include intersecting
attributes as the ACC.

At step 725, the process determines whether the input text
includes more incoming characters by, e.g., moving one step
into the array of codes. If so, the process continues at step 730.
Otherwise, the process continues at step 735. At step 730, an
attribute of a next character (ANC) is determined that
includes an attribute data structure of the incoming next char-
acter, in the attribute table.

At step 740, a Boolean “AND” operation (e.g., “&”) is
performed on the ACC and the ANC, and the process deter-
mines whether the ACC and the ANC intersect (e.g., a result-
ing value is greater than zero) or do not intersect (e.g., the
resulting value is equal to zero). That is, based on the “AND”
operation on their attributes, the process determines whether
the current character and the next character are part of a same
class of characters. If so, the process continues at step 745.
Otherwise, the process continues at step 750.

At step 745, the next character is added to a token buffer.
The process can use one or more characters in the token buffer
to construct a token of the input text. The next character is
added to the token buffer since based on the ACC and the
ANC intersecting, the next character is part of the token to be
constructed. The process returns to step 725.

At step 750, atoken of the input text is constructed based on
the token buffer, e.g., to include the characters added to the
token buffer. The next character is not added to the current
characters in the token buffer since based on the ACC and the
ANC not intersecting, the next character represents a start of
a new token to be constructed. At step 755, the constructed
token is added to a token list which includes one or more
tokens constructed by the process. At step 760, the token
buffer is emptied.

At step 765, the next character is added to the emptied
token buffer that represents the start of the new token to be
constructed. At step 770, the ACC is set to the ANC, e.g., the
ANC is assign as the reference for incoming characters. The
process continues at step 725. When the input text does not
include any more incoming characters, at step 735, a last
token of the input text is constructed. At step 775, the con-
structed last token is added to the token list. At step 780, the
token list is returned to a requesting user via, e.g., a user

US 9,208,134 B2

9

device and/or a third party server, and for further language
processing. The process ends at step 785.

The foregoing examples have been provided for the pur-
pose of explanation and should not be construed as limiting
the present invention. While the present invention has been
described with reference to an exemplary embodiment.
Changes may be made, within the purview of the appended
claims, without departing from the scope and spirit of the
present invention in its aspects. Also, although the present
invention has been described herein with reference to particu-
lar materials and embodiments, the present invention is not
intended to be limited to the particulars disclosed herein;
rather, the present invention extends to all functionally
equivalent structures, methods and uses, such as are within
the scope of the appended claims.

What is claimed:

1. A method implemented in a computer infrastructure,
comprising:

determining an attribute of a current character in input text,
the attribute of the current character indicating one or
more classes of characters the current character is
assigned thereto;

determining one or more attributes of one or more next
characters in the input text, the one or more attributes of
the one or more next characters indicating the one or
more classes the one or more next characters are
assigned thereto; and

constructing a token of the input text that comprises the
current character and the one or more next characters,
the attribute of the current character and the one or more
attributes of the one or more next characters intersecting
with each other,

wherein the attribute of the current character and the one or
more attributes of the one or more next characters com-
prises an attribute data structure which comprises a one-
byte array, and

wherein the one-byte array comprises a plurality of binary
bits and each bit of the binary bits indicates a different
class from remaining bits of the binary bits.

2. The method of claim 1, further comprising setting the
attribute data structure of the current character and the one or
more next characters, to assign the current character and the
one or more next characters to the one or more classes.

3. The method of claim 1, wherein the attribute of the
current character and the one or more attributes of the one or
more next characters is stored in an attribute table indexed by
at least one of characters in the input text and codes of the
characters in the input text.

4. The method of claim 1, further comprising receiving the
input text from at least one of a local component of the
computer infrastructure, a user device, and a third party
server.

5. The method of c¢laim 1, wherein the one or more classes
comprise:

a first alphabet class corresponding to a first language

alphabet;

a second alphabet class corresponding to a second lan-
guage alphabet different from the first language alpha-
bet;

a punctuations, white spaces and controls class; and

a numerals class.

6. The method of claim 5, wherein the first language alpha-
bet is English characters and the second language alphabet is
Arabic characters.

7. The method of claim 1, further comprising performing a
Boolean operation on the attribute of the current character and
the one or more attributes of the one or more next characters

10

15

20

25

30

40

45

50

60

10

to determine whether the attribute of the current character and
the one or more attributes of the one or more next characters
intersect with each other.
8. The method of claim 1, further comprising adding the
one or more next characters to a token buffer, the constructing
of the token being based on the token buffer.
9. The method of claim 8, further comprising:
determining an attribute of a next character in the input
text, the attribute of the next character indicating the one
or more classes the next character is assigned thereto;

emptying the token buffer after the constructing of the
token;

adding the next character to the token buffer, the attribute

of the current character and the attribute of the next
character not intersecting with each other;

setting the attribute of the current character to the attribute

of the next character; and

constructing another token of the input text that comprises

the next character based on the token buffer.

10. The method of claim 1, further comprising:

adding the constructed token to a token list comprising one

or more tokens of the input text; and

returning the token list to at least one of a local component

of the computer infrastructure, a user device, and a third
party server.

11. A computer program product comprising a non-transi-
tory tangible computer usable storage medium having read-
able program code embodied in the non-transitory tangible
computer usable storage medium, the computer program
product includes at least one component operable to:

determine an attribute of a current character in input text,

the attribute of the current character indicating one or
more classes of characters the current character is
assigned thereto;

determine one or more attributes of one or more next char-

acters in the input text, the one or more attributes of the
one or more next characters indicating the one or more
classes the one or more next characters are assigned
thereto; and

construct a token of the input text that comprises the cur-

rent character and the one or more next characters, the
attribute of the current character and the one or more
attributes of the one or more next characters intersecting
with each other, and the attribute of the current character
and the one or more attributes of the one or more next
characters comprising an attribute data structure which
comprises a one-byte array,

wherein the one-byte array comprises a plurality of binary

bits and each bit of the binary bits indicates a different
class from remaining bits of the binary bits.

12. The computer program product of claim 11, wherein
the at least one component is further operable to set the
attribute data structure of the current character and the one or
more next characters, to assign the current character and the
one or more next characters to the one or more classes.

13. The computer program product of claim 11, wherein
the attribute of the current character and the one or more
attributes of the one or more next characters is stored in an
attribute table indexed by at least one of characters in the input
text and codes of the characters in the input text.

14. The computer program product of claim 11, wherein
the at least one component is further operable to receive the
input text from at least one of a local component of the
computer program product, a user device, and a third party
server.

15. The computer program product of claim 11, wherein
the one or more classes comprise:

US 9,208,134 B2

11

a first alphabet class corresponding to a first language
alphabet;

a second alphabet class corresponding to a second lan-
guage alphabet different from the first language alpha-
bet;

a punctuations, white spaces and controls class; and

a numerals class.

16. The computer program product of claim 11, wherein

the at least one component is further operable to perform a
Boolean operation on the attribute of the current character and
the one or more attributes of the one or more next characters
to determine whether the attribute ofthe current character and
the one or more attributes of the one or more next characters
intersect with each other.

17. The computer program product of claim 11, wherein

the at least one component is further operable to add the one
or more next characters to a token buffer, the constructing of
the token being based on the token buffer.

18. The computer program product of claim 11, wherein

the at least one component is further operable to:

add the constructed token to a token list comprising one or
more tokens of the input text; and

return the token list to at least one of a local component of
the computer program product, a user device, and a third

party server.
19. A computer system for tokenizing multilingual textual

documents, the system comprising:

a CPU, a computer readable memory and a tangible com-
puter readable storage media;

first program instructions to determine an attribute of a
current character in input text, the attribute of the current
character indicating one or more classes of characters
the current character is assigned thereto;

20

25

12

second program instructions to determine one or more
attributes of one or more next characters in the input text,
the one or more attributes of the one or more next char-
acters indicating the one or more classes the one or more
next characters are assigned thereto;
third program instructions to perform a Boolean operation
on the attribute of the current character and the one or
more attributes of the one or more next characters to
determine whether the attribute of the current character
and the one or more attributes of the one or more next
characters intersect with each other; and
fourth program instructions to construct a token of the
input text that comprises the current character and the
one or more next characters, the attribute of the current
character and the one or more attributes of the one or
more next characters intersecting with each other, and
the attribute of the current character and the one or more
attributes of the one or more next characters comprising
an attribute data structure which comprises a one-byte
array,
wherein the one-byte array comprises a plurality of binary
bits and each bit of the binary bits indicates a different
class from remaining bits of the binary bits, and

wherein the first, second, third, and fourth program instruc-
tions are stored on the tangible computer readable stor-
age media for execution by the CPU via the computer
readable memory.

20. The computer system of claim 19, wherein the attribute
of the current character and the one or more attributes of the
one or more next characters is stored in an attribute table
indexed by at least one of characters in the input text and
codes of the characters in the input text.

#* #* #* #* #*

